مقایسه روش بایزی (Bayesian) و کلاسیک در آورد پارامترهای مدل رگرسیون لجستیک با وجود مقداری کم‌گشته در متغیرهای کمکی

مقدمه

مسعود کریمل، دانشجوی دکتری آمار زیستی، دانشکده پزشکی تهران و عضو هیئت

علی دانشگاه علوم پزشکی و توانبخشی - نویسنده رابط:

مکارملو@uswr.ac.ir

درکاریمی محمده: استاد دانشگاه پزشکی تهران و استاد دانشگاه علوم پزشکی تهران

گزارش اصول مشکی: استاد غرب آمر دانشگاه علوم پزشکی تهران و استاد دانشگاه علوم پزشکی تهران

درکرکنی اضافه: دانشیار دانشگاه پزشکی تهران معلم و استاد دانشگاه علوم پزشکی تهران

چکیده

زمینه و هدف: رگرسیون لجستیک ابزاری تحلیلی است که بطور مشابه درکاریمی در تحقیقات پزشکی و اپیدمیولوژیک کاربرد دارد. دریسیاری از مطالعات به‌جمع‌آوری داده‌های مربوط به موضوع‌های مختلف استفاده می‌کند. داده‌های جمع‌آوری شده در تحقیقات پزشکی تهران به‌طور مشابه درکاریمی کمک می‌کنند.

روش کلی: در این مطالعه روشی برای تجزیه و تحلیل داده‌های متغیرهای مدل‌های رگرسیون لجستیک و تحقیقات مقداری کم‌گشته در متغیرهای مدل‌های R به‌عنوان بهترین بررسی شده.

روش برای بررسی این主题، مدل‌های R به‌عنوان بهترین بررسی شده، در مدل‌های R به‌عنوان بهترین بررسی شده، در این مقاله مقدماتی تحلیل، مدل‌های R به‌عنوان بهترین بررسی شده و مدل‌های R به‌عنوان بهترین بررسی شده استفاده می‌شود. در این مقاله مقدماتی تحلیل، مدل‌های R به‌عنوان بهترین بررسی شده و مدل‌های R به‌عنوان بهترین بررسی شده استفاده می‌شود.

نتایج: با کاربردن این روش در تحلیل، مدل‌های R به‌عنوان بهترین بررسی شده، در این مقاله مقدماتی تحلیل، مدل‌های R به‌عنوان بهترین بررسی شده و مدل‌های R به‌عنوان بهترین بررسی شده استفاده می‌شود.

واژگان کلیدی: رگرسیون لجستیک، کم‌گشته، تصادفی (MCMC)
مشکل مواجهه سازد. گمشدگی‌ها می‌توانند در متغیرهای پاسخ باید متغیرهای کمکی رخ دهد. در این مطالعه، گمشدگی در مقدار متغیرهای کمکی مورد نظر بوده و مکانیزم آن ازون مسأله‌گزاری تصادفی (MAR) می‌باشد.

در ناحیه بیهوشی‌ها داده‌های گمشدگی عمدتاً به‌روش (Gao and Hui 1997). مورد استفاده قرار می‌گیرد.

همچنین در این مطالعه، متغیرهای متغیر می‌شوند که در این ناحیه خاصی از داده‌ها به‌دست می‌آیند. خوددادی از پاسخ و عدم تکمیل کاملاً بر اساس نهایت نوع ناگفته دارد.

گمشدگی کاملاً تصادفی (Completely At Random) MAR (Non Ignorable) NI غیرقابل اعمال (Kleinbaum D.G., Klein M., Fleiss J.L. et al (2002) که در گمشدگی در مقدار درک می‌تواند به خود آن متغیرهای دیگری مSSIP ندارد و این می‌تواند آزمودنی با مقدار گمشده را مطالعه‌های حذف و آنالیز دارای براساس حجم مسأله جدید اجرای نمودانه بدون اینکه دریبرورده با ایجاد شود.

در مسأله‌گزاری گمشدگی در MAR Covariate متغیرهایی (Covariate) بستگی به متغیرهای دیگری بستگی دارد. به عنوان مثال در بررسی ارتباط بین فشار خون و سیگار کشیدن، گمشدگی متغیرهای متغیر می‌تواند در مقدار متغیر خوانستگی به‌روش گمشده با سیگار کشیدن می‌شود.

در مسأله‌گزاری گمشدگی در MAR مقدار (Maximum Likelihood Estimation) MLE محاسبه برآوردگر به روش الگوریتم تکراری (Expectation Maximization Algorithm) EM است. این روش علاوه بر مدل‌سازی‌های محاسباتی (اشملت) نتیجه‌گیری به‌روش داده‌ها با توجه به تعداد متغیرهای دیگری مسأله جدید اجرای نمودانه بدون اینکه دریبرورده با ایجاد شود.

با توجه به محل فوق ملاحظه‌ها می‌شود که مشکل گمشدگی می‌تواند تجزیه و تحلیل‌های آماری را به‌سمیه‌های ارتباطی می‌سازد و به‌طور دستیابی به یک نتیجه‌گیری مفید از داده‌های جمع آوری شده را با
کمیک پوسته‌ای دارای مقاومت گمشده‌ی اتوژن نرم‌پوسته بپرود.
کند. به تکرار نیاز ندارد. به علاوه این نوشیدنی روش
موجه کارول را هنگامی دوگیر کمیکی در کار باشد که
پیکی با مشاهده‌ها کامل و درکی در اورام مشاهده‌های
باندی، مورد بررسی قرار داده. آنها روش داده‌ای که
باورش جانی مقایسه‌گر و روش درست‌نمایی مشاهده
نموده و نتیجه‌گیری که روش درست‌نمایی، راهنمایی که
مدل به طور مناسبی معنی داشته باشد، بهتر عمل می‌نماید.
Satten G.A. and Kupper L. (1997a, b) روش تحلیل رگرسیون
لیستیک‌ها و وقتی که
متوسط کمیکی دارای مقایسه‌گر یکی از
متوسط‌های جانی برای پیکار‌دهندگان اطلاعی از
متوسط‌های دارای مقایسه‌گر گمشده در مدل استفاده کرده، یکی و اسکاک
قاله دیگری نیز تنها دریکی پیکار
متوسط‌های گمشده و اعمال تغییراتی در تویای
رگرسیون شرطی و غیر شرطی، پرآوره پایام‌ها را بهبود
Rathouz P.J. et al. (2003) رده جدیدی از بروآورده از این نموده که
براساس مدل نبیز توزیعی متغیرهای کمیکی دارای داده
های گمشده و مدل بنی دندد گمشده مقدار متغیر
کمیکی پایه‌گذاری شده است.

آمارشانکس کلاسیک بی‌کننده‌ای کسترهای ای را
دریبرورده با مسایل گمشده در مدل‌های
لیستیک‌ها انجام داده و مقالاتی نیز به چپ رسانده اند که
عوامل دریبرورده ماهوئه‌های کشتی و ماهوئه‌های
Tortumkin and Mutanen P. (1987)
ASHBY D. et al. (1993)
Muller P. et al. (1999)

EM درست‌نمایی با استفاده از
گکسن به کمکی از متابولیسم
M.D. 1994) و لیتل و شالاختر (Fuchs)
واستفاده از
آپارکتمی 26 می. 1985
EM, به پرآوره مکانیم درست‌نمایی باوجود
مقاومت گمشده در مجموعة‌های کمیکی یا ترکیبی
از متابولیسم و پرآوره در مجموعه‌های اقیان
نحوه‌اند. که این روش عوامل به کمکی نیاز داشته
وگاهی به جهت محاسباتی پیچیده این است. بلای
Blackhurst D.W. and Schlueter (1985)
EM, در استفاده از
هگامی که متغیر
احتمالا دربرخی مشاهدات دارای مقادیر X متغیر کمکی گمشد است. به همین از سمت ساله و یک متغیر Z در مجاورت X در داده‌ها، در اینجا فرض می‌کنیم که دو متغیر با مشاهده‌ای کامل و بدون گمشدگی باشند. در این حالت احتمالات شرطی متغیر باینری به شرط متغیرهای کمکی، با استفاده از مدل لجستیک به صورت روابط 1 تا 4 تعیین می‌شوند. در آن‌ها هدف از تحلیل رگرسیون لجستیک بدست آوردن برآوردی از پارامترهای مدل برای تبیین ارتباط بین X و Y متغیر پاسخ و مجموعه‌ای از متغیرهای کمکی و X مشاهده‌ای باشد. در صورت کاملاً بودن متغیر Z از روش‌های استاندارده جهت برآورد این پارامترها استفاده می‌شود. اما اگر فرض کنیم که برخی از مشاهدات متغیر X گمشده باشند در این صورت داریم:

\[
\theta(Z) = \frac{p(y = 1 \mid z)}{p(y = 0 \mid z)}
\]

بنابراین با تعریف فوق بخت بیماری (Odds Ratio) و بیشتر بخت بیماری (Odds) به ترتیب عبارت خواهد بوداز:

\[
\psi(x, z, x', z') = \frac{\theta(x, z)}{\theta(x', z')}
\]
در صورتی که متغیر کمکی X در دایر مقدار گم‌شده باشد، متغیر نشانگر \(\Delta_i \) را به این صورت تعریف می‌کنیم: \(\Delta_i = \text{اگر} X_i \) مشاهده‌شده باشد، و \(\Delta_i = \text{اگر} X_i \) مشاهده نشده باشد. با این تعریف، می‌توان تابع درستنمایی داده‌های کامل را بصورت زیر را نوشت:

\[
\]

در صورتی که مقدارهای گم‌شده \(\rho \) و \(\pi \) توان یکی باشد، متغیر متغیر X در افراد سالم و بیماری در داده‌های مطالعه ساخته‌کننده است. از قطعیت بین تابع استفاده ﺗک (Satten G.A. and Kupper L. 1993 a,b)

\[
\bar{\theta}(z) = \sum \theta(x, z) . \pi(x | z)
\]

در این صورت می‌تواند. دوگانه تابع مقدار مذکور عبارت است از:

\[
\rho(x | z) = \frac{\pi(x | z) \theta(x, z)}{\sum \pi(x | z) \theta(x, z)} (9)
\]

در صورتی که مقدارهای گم‌شده X توان یکی باشد، متغیرهای \(\pi(x | z) \) باید از انتگرال‌الا استفاده شود و عبارت‌های \(\rho(x | z) \) نیز تابع چگالی احتمال در نظر گرفته شوند.

تابع درستنمایی، توزیع پیشین و توزیع پسین:

در این صورت محاسبه
\(\pi(x | z) \) مقدارهای شمارا و محصولی را اختیار می‌کند توزیع مناسبی که می‌توان برای مفروض دانست عبارت است از:

\[
L(\beta) = \prod_{i=1}^{n} [\theta(X_i, Z_i)]^{z_i} / [1 + \theta(X_i, Z_i)] (10)
\]

در صورتی که مقدارهای شمارا \(Z_i \) و X مشاهده شده باشد، درصد محصولی را انتگرال کرده که می‌توان برای (Satten G.A. and Carol R.J. 2004)

\[
\pi(x | z) = \frac{e^{\gamma x z}}{\sum_{x'} e^{\gamma x' z}} = \frac{e^{\gamma_0 + \gamma_1 x + \gamma_2 z + \gamma_{12} x z}}{\sum_{x'} e^{\gamma_0 + \gamma_1 x' + \gamma_2 z + \gamma_{12} x' z}} = \frac{e^{\gamma_1 x + \gamma_{12} x z}}{\sum_{x'} e^{\gamma_1 x' + \gamma_{12} x' z}} (13)
\]
پایگانگری روابط (3) در رابطه (12) و بازنمی‌پذیر مجدد تابع دستندامی (12) دریم:

\[l(\beta \mid X, Z) = \prod_{i=1}^{n} \left(\frac{e^{\beta_0 + \beta_1 x_i + \beta_2 z_i + \beta_{12} x_i z_i}}{1 + \sum_{x} e^{\beta_0 + (\beta_1 + \gamma_1) x_i + \beta_2 (z_i + \gamma_2 z_i) + (\beta_{12} + \gamma_{12}) x_i z_i}} \right)^{\delta_i} \]

\[\Delta_i \times \left(\sum_{x} e^{\beta_0 + (\beta_1 + \gamma_1) x_i + \beta_2 (z_i + \gamma_2 z_i) + (\beta_{12} + \gamma_{12}) x_i z_i} \right)^{-1} \]

با فرض معلوم بودن مشاهدات \((X, Z, \beta)\) می‌توان به کمک قضیه پیش‌نویس \(\beta\) به شرط رابدست آورد (Gils et al., 1997):

\[\Pi(X, Z, \beta) = L(\beta \mid X, Z) \Pi(\beta) \]

(16)

که به آن توزیع پیشین می‌گویند توزیع پیشین عقیده‌دار منظورهای مجهول پس از مشاهده داده‌ها نشان می‌دهد درستنیتی بیشتر تا وپیش توزیع پیشای استنباطی درباره پارامتریست.

در این مطالعه با ضرب نمونه چگالی توزیع نرمال هر پارامتر در دستندامی (14) شکل توزیع پیشی حاصل تعلیم بود و عملیات تاجزه به استفاده از الگوریتم متروپولیس (Metropolis) با معرفی توزیع پیش‌سازه (Proposal distribution) با مثال نرمال شده. با پیمایش (Proposal distribution) در نظر گرفتن توزیع همبستگی مشاهدات رابطه دستندامی قرار داده‌م. برای استنباط پیش‌ای لازم است توزیع پیش از مشاهده‌ها را بصورت زیر محاسبه نماییم:

\[\Pi(X, Z, \beta) = L(\beta \mid X, Z) \Pi(\beta) \]

(15)

که تابعی از پارامترهای \(\beta_0, \beta_1, \beta_2, \beta_{12}, \beta\) می‌باشد. با استفاده از ابزار فوق و مشتاق کloomberg از آن نسبت به تک پارامترهای‌مانندی صفر مقدار داده اکنون به جمله مدل شده است. حداقل محدود مشاهده‌های روشن‌گار را استفاده از مدلین‌ها با داده‌های مقداری کمکی از پارامترهای بازخوانی‌های چگالی در دستندامی مذکور بسیاری از روش استاندارد است که در آن از سایر اطلاعات آزموده‌های دارای مقداری کمکی از پارامترهای بازخوانی‌های چگالی در دستندامی مذکور بسیاری از روش استاندارد است که در آن از سایر اطلاعات آزموده‌های دارای مقداری کمکی از پارامترهای بازخوانی‌های چگالی در دستندامی مذکور بسیاری از روش استاندارد است که در آن از سایر اطلاعات آزموده‌های دارای مقداری کمکی از پارامترهای بازخوانی‌های چگالی در دستندامی مذکور بسیاری از روش استاندارد است که در آن از سایر اطلاعات آزموده‌های دارای مقداری کمکی از پارامترهای بازخوانی‌های چگالی در دستندامی مذکور بسیاری از روش استاندارد است که در آن از سایر اطلاعات آزموده‌های دارای مقداری کمکی از پارامترهای بازخوانی‌های چگالی در دستندامی مذکور بسیاری از روش استاندارد است که در آن از سایر اطلاعات آزموده‌های دارای مقداری کمکی از پارامترهای بازخوانی‌های چگالی در دستندامی مذکور بسیاری از روش استاندارد است که در آن از سایر اطلاعات آزموده‌های دارای مقداری کمکی از پارامترهای بازخوانی‌های چگالی در دستندامی مذکور بسیاری از روش
نتایج:

مقایسه روش بایزی (Bayesian) و MCMC در بخش قبل، مدل‌سازی چند از دو روش بایزی (Bayesian) و MCMC پیامدهای برای پارامترهای مدل‌های ویژه انتخاب شده بیشتری بیان گردید. حال کاربران آن بر روی داده‌های بیشتر مطالعه مقطعی و سپس مقایسه برآوردهای ناشی از آن نشان داده می‌شود. در این بخش، تئوری مباحثی را گفته و از این کپی و دریچه بعد با یک نمونه واقعی اترپح سامت ویژه‌ای مطرح و در آن متغیرهای کمکی و d و x متغیرهای وابسته به پاسخ است

نظر گزارش:

\[
\begin{array}{cccc}
\text{x} & \text{z} & \text{d} & \text{n} \\
0 & 1 & 2 & 30 \\
0 & 1 & 2 & 30 \\
0 & 1 & 2 & 30 \\
0 & 1 & 2 & 30 \\
\end{array}
\]

به عنوان مثال سطح اول این جدول نشان دهنده این است که از اولین ۲۶۰ نفر موجود در طبقه \(x=0 \) عدد دو ۲۸۰ نفر بیمار دریافتگن در این مرتیبی، یک نمونه ۲۰۰۰ تایی خواهند داشت که از جهاتی با داده‌های معنی‌دار مطالعه حقیقی مشابه است که در این آزمایش متغیر Z به صورت ۵۰/۵۰/۵۰/۵۰/۵۰/۵۰/۵۰ و متغیر X به صورت \(x=26/24 \) در کلیه مقایسه نسبت بست (OR) بین ۲ تا می‌باشد.

برای آنتی‌باد، داده‌های فوق ارزش بسته به افزایش افزایش FCMECMC نشان دهنده داده‌های کل مورد انتخاب مقدار فیزی لازم برای دریافتگن x بر اساس کاملاً تصادفی به داده‌های داده‌های مکرلی، شایسته و آنتی‌باد با به حجم نمونه ۱۰۰۰ آنتی‌باد صورت پذیرفت. SPiegelhalter D. et al. (2003) به اجرا انتسابی های بایزی یکنیک

\[
\text{Sattan G.A. and Carol R}.\ S. 2000
\]

ببخوش آمارشناختی بیرا فرایگرفته است. \(\beta, \beta, \beta, \beta, \beta, \beta, \beta, \beta \) در مجموع با نپین روش پارامترهای با استفاده مجموعه داده‌های فاز و ترد افزایش مدل‌کر بی‌پایان گردیده‌اند. \(\beta, \beta, \beta, \beta, \beta, \beta, \beta, \beta \) ضمناً از ذکر مقادیر برآوردشده برای پارامترهای \(\beta, \beta, \beta, \beta, \beta, \beta, \beta, \beta \) بدیل اینکه اصول نهایت کراری در تحریک نتایج تاریک خودداری شده است.

از چچ برای مقایسه سنتونهای یک تا شش این جدول به شرح زیر می‌باشد:

| ستون یک - شال نام پارامترها است. | ستون دو - شال پارامترهای بایزی به تکنیک | برای داده‌های کامل بدون گمشده | مدل‌سازی (ML) (Complete Case) (CC) به‌دست آمده از S-Plus به‌دست آمده از
| نام پارامترها است. | بایز
| برای داده‌های کامل بدون گمشده | است که کاملاً مطابق WinBUGS و یا برای داده‌های مطروح برای داده‌های کامل بدون گمشده | است که با ماشین‌های S-Plus به‌دست آمده از
| نام پارامترها است. | به اهداف مناسبه | شده در خشک یک | محاسبه شده این و به اختصار باعثات
| فرمول (Full Data) | FMCMC | FMCMC | FMCMC |

به عنوان مثال سطح اول این جدول نشان دهنده این است که از اولین ۲۶۰ نفر موجود در طبقه \(x=0 \) عدد دو ۲۸۰ نفر بیمار دریافتگن در این مرتیبی، یک نمونه ۲۰۰۰ تایی خواهند داشت که از جهاتی با داده‌های معنی‌دار مطالعه حقیقی مشابه است که در این آزمایش متغیر Z به صورت ۵۰/۵۰/۵۰/۵۰/۵۰/۵۰/۵۰ و متغیر X به صورت \(x=26/24 \) در کلیه مقایسه نسبت بست (OR) بین ۲ تا می‌باشد.

برای آنتی‌باد، داده‌های فوق ارزش بسته به افزایش افزایش FCMECMC نشان دهنده داده‌های کل مورد انتخاب مقدار فیزی لازم برای دریافتگن x بر اساس کاملاً تصادفی به داده‌های داده‌های مکرلی، شایسته و آنتی‌باد با به حجم نمونه ۱۰۰۰ آنتی‌باد صورت پذیرفت. SPiegelhalter D. et al. (2003) به اجرا انتسابی های بایزی یکنیک

\[
\text{Sattan G.A. and Carol R}.\ S. 2000
\]
 saison شش - شمار برآوردهای برای داده‌های کامل و هیچ آزمونی ندارد مقادیر گمشده (CC) است؛ به این صورت از درست‌مانی سانس و کارول برای (۱۴) و نگارش برنامه‌ای WinBUGS در محیط SCMCMCG کار گرفته شده است.

شانزایی خطای معیار ۲۰ پارامتر در جدول دو دام است همان‌گونه که ملاحظه می‌شود برآوردهای سه سیستم هر یک می‌توان به صورت کاملاً تصادفی نشان داده می‌شود که اگر گمشده در اینصورت می‌تواند میزان کاهش احتمال در این برآوردهای دو سیستم گمشده (MCAR) باشد. نهایت روز حجم نمونه این که در آزمون‌های داده مقادیر گمشده حذف شده باشد (در اینجا n = 1400) برای مثال (n = 4) با آنالیز روز حجم نمونه کامل (۲۰۰۰) یکسان می‌باشد. به‌عنوان دیگر در مکانیزم گمشده CMAR کافی است افرادی داده گمشده را حذف کرده و تجزیه و تحلیل راه‌برداری داده‌ها ناپاصل‌های آنها باقی‌مانده انجام پذیرد. در این صورت برآوردهای Carlin B.P. and Louis T.A. 2000 ارتباطی با پایداری و کارا بودن...

با احتمال انتشار (SCMLE) نام گذاری شده است.

MCMC یا بطور مخفی برای الگوریتم برآوردهای برای داده‌های کامل و با حذف آزمونی های داده

\[
P(d=-1, z=-0.5, p(d=-1, z=1)=0.10, p(d=1, z=-0.5) = 0.20, p(d=1, z=1)=0.30)
\]

در نظر می‌گیرد که مدل‌های تصادفی از مکانیزم گمشده (MCAR) با انتشار x با استفاده از مکانیزم گمشده (MAR) تصادفی، برای راه‌گیری مقادیر اختیاری ویک متفاوت از احتمال گمشده‌انداز X به‌طور از سطح متغیرهای X و Z بطور زیر، حذف گردیده.

شاپوری کریمی و همکاران
مقایسه روش پیژشی بAYESIAN (بایزیان) و کلاسیک در ...

در طبقات متغیرهای سمع ریه و جنس به MAR

ترتیب ارتباط (G) z = 3/20 از طبقه (G) z = 1/68 و ارتباط (G) z = 1/20 به میزان 1/20 داده ها به تصادف

از الگول داده ها طریق تصادفی (MAR) از انتگر سیگار کشیدن در مورد طرح مطرح

شده درخشی پیل، به پروردهای پارامتر یکدل رگرسیون

لنجستیک اقدم شد که تا نایج در جدول این است.

ترتیب سنوتها در جدول 2 مسابقه جدول 1 است.

در این جدول سنوتها دوم و سوم همانند جدول 1 و 2 مربوط به داده های کمال و سنوتن چهارم، گواهی می‌کنند که

ملاحظه می کنیم که پارامترهای بایزی (SCMC)

سنوتن شش که با پارامترهای درستی مانند و کارول مربوط به داده کمال می‌باشد دست آمده این، نسبت به

مایور پروردهای داده‌های کمال تقدیم ترند

و دقت مشاهده دارد.

برای توپیج پیشتر، عنوان مثل مقادیر پروردهای شده

پارامتر β مورد بررسی قرار می‌گیرد. در صورتی

که نمونه کمال 2788 تایی بودن کم‌کمیک و یکبار گردیده

شویه، با استفاده از ادال رگرسیون لنجستیک مقدار پرورده

پارامتر متغیر جنس به روش ماتریس‌های درستی درست

do (و نیز سنوتن سه روش پیژشی) به

(0/86) به

می‌گردد. گزارش‌های صریح 1300 مشکل سمع ریه

غیرطبیعی در مردان تهرانی 15 سال به بالا 117/2/1492 تا 17/1575 سنة (OR = 0/36)

حال اگر حدود

همین گروه سنی است (G) z = 200 کم‌کمیک

در متغیر سیگار کشیدن وجود MAR

دانته باش و آزمودنی‌های مقادیر کم‌کمیک از مطالعه

حذف گردیده، حجم نمونه به 2013 نفر خواهد رسید.

پارامتر ماتریس‌های درستی پیامد

به ازای این

حاجم از داده‌های کمال در ستون جدول 2 پرورده

100 می‌باشد: به این معنا که مقادیر نسبت بخت

1/36 از (Odds Ratio)
کلاسیک نشان دادند که برآوردهای مدل رگرسیون
لجدیک در مطالعات مورد- شاهدی با یک گفته تابع
درستنیابی تعیین یافته به سوی می‌باید.

نتیجه‌گیری:

بنابراین درصورت مواجه شدن با داده‌های
گمشده اولین قدم بازگردی و مشاهده مجدد واحدهای
موردطالعه و تکمیل مقادیر گمشده است. در مراحل بعد
باید به‌محاسبه احتمالات گمشدگی در سطوح مختلف
MAR منجر گردد. نسبت به تشخیص گمشدگی تصادفی
اطمینان حاصل نمود. درصورت پیش‌بینی با
استفاده از مدل‌های تعمیمی پایه مطرح در این مقاله به
لحاظ انتخاب از نتیجه گیری های نادرست، توصیه
می‌گردد. هرچند به‌درجه حاضر هیچ‌که از نرمال
افزارهای آماری موجود قادر به تحلیل چنین مدل‌هایی
نیستند ولی این است که برنامه کامپیوتری ویژه ای نهی
شود.

بخت:

همانگونه که در پنجم های قبل ملاحظه شد
محله گمشدگی داده‌ها، بامکان‌پذیر درمطالعات
مختصات ازاهیت ویژه ای برخوردار است؛ مطابق با دی‌که این
از ورودی‌های الف دارای مقادیر گمشده اند منجر به
برآوردهای اریب از پارامترهای مدل شده و نهایتاً نتیجه
گیری‌های دویور واقع حاصل می‌گردد.
برآوردهای حاصل از مدل ارائه شده دراین
مطالعه و آنالیز آن به روش بیزین نسبت به سایر روش‌های
برآورده، مقادیر نزدیک‌تری به برآوردهای مدل استاندارد
برای داده‌های کامل داشتند. که این مسئله توسط می‌باشد و
همکاران (2003) نیز در مورد مطالعات مورد- شاهدی
نشان داده شده است. ساین و کارول (2001) نیز به روش
جدول ۱ - مقادیر پارامترها بر روی مدل (MCAR) محقق از تیمارهای پارامترها به روش‌های
FMCMC، FMLE، SCMCMC و SCMLE.

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>FMLE* S-Plus</th>
<th>FMCMC WinBUGS</th>
<th>CCMLE S-Plus</th>
<th>SCMLE R</th>
<th>SCMCMC WinBUGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_1)</td>
<td>(-0.354 (0.779))</td>
<td>(-0.787 (0.795))</td>
<td>(-2.956 (0.068))</td>
<td>(-0.840 (0.376))</td>
<td>(-0.832 (0.767))</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>(-0.823 (0.018))</td>
<td>(-0.353 (0.507))</td>
<td>(-0.983 (0.100))</td>
<td>(-0.491 (0.316))</td>
<td>(-0.497 (0.047))</td>
</tr>
<tr>
<td>(\beta_3)</td>
<td>(-0.738 (0.112))</td>
<td>(-0.353 (0.507))</td>
<td>(-0.983 (0.100))</td>
<td>(-0.491 (0.316))</td>
<td>(-0.497 (0.047))</td>
</tr>
</tbody>
</table>

*FMLE (Full data Maximum Likelihood Estimation)
FMCMC (Full data Markov Chain Monte Carlo estimation)
CCMLE (Complete Case Maximum Likelihood Estimation)
SCMLE (Satten and Carol Maximum Likelihood Estimation)
SCMCMC (Satten and Carol Markov Chain Monte Carlo estimation)
جدول 3. برآورد پارامترهای مدل لجستیک داده‌های سمع ریه بر حسب سیگار کشیدن و جنس به روش‌های \(FMCMC \) و \(SCMCMC \) و \(SCMLE \) و \(CCMLE \)

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>(\beta)</th>
<th>(\beta_{0})</th>
<th>(\beta_{1})</th>
<th>(\chi^{2}Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(FMLE) S-Plus</td>
<td>(FMCMC) WinBUGS</td>
<td>(CCMLE) S-Plus</td>
<td>(SCMLE) R</td>
</tr>
<tr>
<td>غرض ازمیدا</td>
<td>(0.730)</td>
<td>(0.779)</td>
<td>(0.734)</td>
<td>(0.718)</td>
</tr>
<tr>
<td>سیگار کشیدن (X)</td>
<td>(0.000)</td>
<td>(0.100)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>جنس</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>(\chi^{2}Z)</td>
<td>(0.091)</td>
<td>(0.091)</td>
<td>(0.091)</td>
<td>(0.091)</td>
</tr>
</tbody>
</table>

*FMLE (Full data Maximum Likelihood Estimation)
FMCMC (Full data Marcov Chain Monte Carlo estimation)
CCMLE (Complete Case Maximum Likelihood Estimation)
SCMCMC (Satten and Carol Marcov Chain Monte Carlo estimation)

منابع:
Khier, سلیمان. فیله زاده، سقراط. مشکاتی، محمد پرداز.
محمودی، محمدرضا. (1382) جولن مدل‌های شکنندگی
همبسته به روش بیزی. رساله دکتری آماری، دانشگاه تربیت مدرس. دانشگاه یزد.
نوری، احمدعلی. محمد، کاظم. (1380) بررسی سلامت
و بیماری در ایران، انتشارات مرکز ملی تحقیقات
علم پزشکی کشور.
Ashby D., Hutton J.L. and McGeer M.A.
(1993) Simple Bayesian analysis for
case-controlled studies in cancer
epidemiology. Statistician, 42, 786-789.
Blackhurst D.W. and Schluchter M.D.
(1989) Logistic regression with a
partially observed covariate. Comm.
Statist. Simul. 18(1): 139-177.
and Empirical Bayes Methods for Data
Analysis. Second edition, Chapman and
Hall.
Statistical Methods for Rates and
Proportions. Third edition, John Wiley
and Sons.
estimation and model selection in
contingency tables with missing data.
Gilks W.R., Richardson S. and
Spiegelhalter D.J. (1997) Markov Chain

Satten G.A. and Kupper L. (1993a)

Seaman S.R. and Richardson S. (2001)

Monte Carlo in Practice. Chapman and Hall.

Little R.J.A. and Schluchter M.D. (1985)

